

Welcome to Adeft’s documentation!

Adeft (Acromine based Disambiguation of Entities from Text) is a utility for
building models to disambiguate acronyms and other abbreviations of biological
terms in the scientific literature. It makes use of an implementation of the
Acromine [http://www.chokkan.org/research/acromine/] algorithm developed
by the NaCTeM [http://www.nactem.ac.uk/software/acromine/] at the
University of Manchester to identify possible longform expansions for
shortforms based on their text context.
It allows users to build disambiguation models to disambiguate shortforms
based on their text context. A growing number of pretrained disambiguation
models are publically available to download through Adeft.

	Adeft modules reference
	Download Trained Models

	Disambiguate Shortforms

	Discover Longforms

	Recognize Defining Patterns

	Learn Models
	Label Corpora

	Classify

	NLP

	Util

	Tutorials
	Introduction to Adeft

	Training Adeft models

Indices and tables

	Index

	Module Index

	Search Page

Adeft modules reference

	Download Trained Models

	Disambiguate Shortforms

	Discover Longforms

	Recognize Defining Patterns

	Learn Models
	Label Corpora

	Classify

	NLP

	Util

Download Trained Models

Allows models to be downloaded from the command line with

python -m adeft.download

Use

python -m adeft.download --update

to update existing models if models have changed on S3

	
adeft.download.download.download_models(models=None)

	Download models from S3

Models are downloaded and placed into a models directory in the users
home directory. Each model contains a serialized AdeftClassifier,
a dictionary mapping shortforms to dictionaries mapping longform texts to
groundings, and a list of canonical names for each grounding.
Within the models directory, models are stored in subdirectories named
after the shortform they disambiguate with escape characters used to
handle characters that cannot be used in filenames and to distinguish
upper and lower case for compatibility with case insensitive file systems.

	Parameters

	models (Optional[iterable of str]) – List of models to be downloaded. Allows user to select specific
models to download. If this option is set, update will be treated
as True regardless of how it was set. These should be considered
as mutually exclusive parameters.

	
adeft.download.download.download_test_resources()

	Download files necessary to run tests

Downloads a test disambiguator and a set of example training data and
places them in the test_resources folder of the .adeft directory. This
function will error if the necessary directories do not exist. If they do
not already exist they will be created when running
python -m adeft.download

	
adeft.download.download.get_available_models(path='/home/docs/.local/share/adeft/0.11.2/models')

	Returns set of all models currently in models folder

	
adeft.download.download.get_s3_models()

	Returns set of all models currently available on s3

	
adeft.download.download.setup_models_folder()

	Create models folder if it does not exist and download models

	
adeft.download.download.setup_resources_folder()

	Make resources folder and download resources

Replaces content in existing resources folder if it already exists

	
adeft.download.download.setup_test_resource_folder()

	Make test resource folders and download content

Replaces content in existing test_resource_folders if they already
exist.

Disambiguate Shortforms

Implements classes to disambiguate shortforms given text context.

	
class adeft.disambiguate.AdeftDisambiguator(classifier, grounding_dict, names)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Disambiguates a particular shortform in a list of texts

	Parameters

	
	classifier (py:class:adeft.modeling.classify.AdeftClassifier) – Machine learning model for disambiguating shortforms based upon context

	grounding_dict (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary mapping shortforms to grounding_map dictionaries mapping
longforms to groundings

	names (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary mapping groundings to canonical names

	
shortforms

	Shortforms to disambiguate

	Type

	list of str

	
recognizers

	A list of recognizers, one for each shortform, to disambiguate by
searching for a defining pattern.

	Type

	list of py:class:adeft.recognize.AdeftRecognizer

	
labels

	Set of labels that the classifier is able to predict.

	Type

	set [https://docs.python.org/3/library/stdtypes.html#set]

	
pos_labels

	List of labels of interest. Only these are considered when
calculating the micro averaged f1 score for a classifier.

	Type

	list of str

	
disambiguate(texts)

	Return disambiguations for a list of texts

First checks for defining patterns (DP) within a text. If there is
an unambiguous match to a longform with a defining pattern, considers
this to be the correct disambiguation with confidence 1.0.
If no defining pattern is found, uses a logistic regression model to
predict the correct disambiguation. If there were multiple longforms
with different groundings found with a defining pattern, disambiguates
to the grounding among these with highest predicted probability. If no
defining pattern was found, disambiguates to the grounding with highest
predicted probability.

	Parameters

	texts (str [https://docs.python.org/3/library/stdtypes.html#str] or list of str) – fulltext or list of fulltexts in which to disambiguate shortform

	Returns

	result – Disambiguations for text. For each text the corresponding
disambiguation is a tuple of three elements. A grounding,
a canonical name associated with the grounding, and a dictionary
containing predicted probabilities for each possible grounding

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple] or list of tuple

	
dump(model_name, path=None)

	Save disambiguator to disk

	Parameters

	
	model_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Model files will be saved in directory with this name.

	path (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – Path where model is to be stored. Defaults to current directory.
Default: None

	
info()

	Get information about disambiguator and its performance.

Displays disambiguations model is able to produce. Shows class
balance of disambiguation labels in the models training data and
crossvalidated F1 score, precision, and recall on training data.
Classification metrics for multi-label data are calculated by taking
the micro-average over the positive labels. This means the metrics
are calculated globally by counting the total true positives,
false negatives, and false positives. Positive labels are starred in
in the displayed output. F1, Precision, and Recall are also shown for
for each label separately. Classification metrics may not be available
depending upon how the model was trained.

	Returns

	A string representing the information about the disambigutor.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
modify_groundings(new_groundings=None, new_names=None)

	Update groundings and standardized names

Modify groundings and standard names for the disambiguator without
retraining. Cannot map two existing groundings to a single new
grounding, as this leads to a nontrivial change in the model rather
than just a relabeling.

	Parameters

	
	new_groundings (Optional[dict [https://docs.python.org/3/library/stdtypes.html#dict]]) – Dictionary mapping a subset of previous groundings to updated
groundings. If None, no groundings are modified. Default: None

	new_names (Optional[dict [https://docs.python.org/3/library/stdtypes.html#dict]]) – Dictionary mapping a subset of previous groundings to updated
names. If None, no names are modified. Default: None

	
update_pos_labels(pos_labels)

	Update which labels are considered pos_labels

Micro-averaged precision, recall, and f1 scores are also updated.

Warning: If this method is called on a disambiguator trained with a
a version prior to 0.10.0, global precision, recall, and f1 will be set
to NaN. Older disambiguators must be retrained to update positive
labels and recompute model statistics.

	Parameters

	pos_labels (list [https://docs.python.org/3/library/stdtypes.html#list]) – list of strs. Should be a subset of the labels produced by the
underlying classifier. Check the labels attribute of the
AdeftDisambiguator to see which labels are produced.

	
version()

	Returns version string for disambiguator

	Returns

	String of the form
<adeft_version>::<timestamp>::<hash>
where <hash> is the md5 hash of the grounding_dict
jsonified with sorted keys.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
adeft.disambiguate.load_disambiguator(shortform, path='/home/docs/.local/share/adeft/0.11.2/models')

	Returns adeft disambiguator loaded from models directory

Searches folder specified by path for a disambiguation model
that can disambiguate the given shortform and returns this
model

	Parameters

	
	shortform (str [https://docs.python.org/3/library/stdtypes.html#str]) – Shortform to disambiguate.

	path (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – Path to models directory. Defaults to adeft’s pretrained models.
Users have the option to specify a path to another directory to use
custom models.

	Returns

	A disambiguator that was loaded from a file. Returns None if there
are no disambiguation models in the supplied folder that can
disambiguate the given shortform

	Return type

	py:class:adeft.disambiguate.AdeftDisambiguator

	
adeft.disambiguate.load_disambiguator_directly(path)

	Returns disambiguator located at path

	Parameters

	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path to a disambiguation model. Must be a path to a directory
<model_name> containing the files
<model_name>_model.gz, <model_name>_grounding_dict.json,
<model_name>_names.json

	Returns

	A disambiguation model loaded from folder specified by path

	Return type

	py:class:adeft.disambiguate.AdeftDisambiguator

Discover Longforms

Recognize Defining Patterns

Implements the disambiguation of shortforms based on recognizing an
explicit defining pattern in text.

	
class adeft.recognize.AdeftRecognizer(shortform, grounding_map, window=100)

	Bases: adeft.recognize.BaseRecognizer

Class for recognizing longforms by searching for defining patterns (DP)

Searches text for the pattern “<longform> (<shortform>)” for a collection
of grounded longforms supplied by the user.

	Parameters

	
	shortform (str [https://docs.python.org/3/library/stdtypes.html#str]) – shortform to be recognized

	grounding_map (dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]) – Dictionary mapping longform texts to their groundings

	window (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – Specifies range of characters before a defining pattern (DP)
to consider when finding longforms. Should be set to the same value
that was used in the AdeftMiner that was used to find longforms.
Default: 100

	
_trie

	Trie used to search for longforms. Edges correspond to stemmed tokens
from longforms. They appear in reverse order to the bottom of the trie
with terminal nodes containing the associated longform in their data.

	Type

	adeft.recognize._TrieNode

	
class adeft.recognize.BaseRecognizer(shortform, window=100)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Base class for recognizers

Recognizers are built to identify longform expansions for a shortform by
searching for defining patterns (DPs).

	Parameters

	
	shortform (str [https://docs.python.org/3/library/stdtypes.html#str]) – shortform to be recognized

	window (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – Specifies range of characters before a defining pattern (DP)
to consider when finding longforms. Should be set to the same value
that was used in the AdeftMiner that was used to find longforms.
Default: 100

	
recognize(text)

	Find longforms in text by searching for defining patterns (DPs)

	Parameters

	text (str [https://docs.python.org/3/library/stdtypes.html#str]) – Sentence where we seek to disambiguate shortform

	Returns

	expansions – Set of longforms corresponding to shortform in sentence if a
defining pattern is matched. Returns None if no defining patterns
are found

	Return type

	set of str

	
strip_defining_patterns(text)

	Return text with defining patterns stripped

This is useful for training machine learning models where training
labels are generated by finding defining patterns (DP)s. Models must
be trained to disambiguate texts that do not contain a defining
pattern.

The output on the first sentence of the previous paragraph is
“This is useful for training machine learning models where training
labels are generated by finding DPs.”

	Parameters

	text (str [https://docs.python.org/3/library/stdtypes.html#str]) – Text to remove defining patterns from

	Returns

	stripped_text – Text with defining patterns replaced with shortform

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
class adeft.recognize.OneShotRecognizer(shortform, window=100, **params)

	Bases: adeft.recognize.BaseRecognizer

Identify longform expansions using subsequence matching

Uses a string matching algorithm to determine longform boundaries
for a defining pattern for only a single text.

	
shortform

	shortform to be recognized

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
window

	Specifies range of characters before a defining pattern (DP)
to consider when finding longforms. Should be set to the same value
that was used in the AdeftMiner that was used to find longforms.
Default: 100

	Type

	Optional[int [https://docs.python.org/3/library/functions.html#int]]

	
**params

	Parameters for :py:class`adeft.score.AdeftLongformScorer`

Learn Models

Implements classes needed to label text corpora, and learn a logistic
regression model to disambiguate across a set of longforms for a given
shortform.

Label Corpora

	
class adeft.modeling.label.AdeftLabeler(grounding_dict)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Class for labeling corpora

	Parameters

	grounding_dict (dict of dict of str) – Dictionary mapping shortforms to grounding_map dictionaries mapping
longforms to groundings

	
recognizers

	List of recognizers for each shortform to be considered. Each
recognizer identifies longforms for a shortform by finding defining
matches to a defining pattern (DP)

	Type

	list of py:class`adeft.recognize.AdeftRecognizer`

	
build_from_texts(text_tuples)

	Build labeled corpus from a list of texts

Labels texts based on defining patterns (DPs)

	Parameters

	text_tuples (list of tuple) – List of two element tuples whose first elements are texts from
which we seek to build a corpus and whose second elements are
identifiers associated with the texts. Each text should have a
unique identifier associated to it.

	Returns

	corpus – Contains a tuple for each text in the input list which contains
a defining pattern. Multiple tuples correspond to texts with
multiple defining patterns for longforms with different groundings.
The first element of each tuple contains a training text with all
defining patterns replaced with only the shortform. The second
element contains a grounding label for the desired shortform within
the training text that was identified through a defining
pattern. The third element contains the identifier for the given
training text.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

Classify

	
class adeft.modeling.classify.AdeftClassifier(shortforms, pos_labels, random_state=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Trains classifiers to disambiguate shortforms based on context

Fits logistic regression models with tfidf vectorized ngram features.
Uses sklearns LogisticRegression and TfidfVectorizer classes.
Models can be serialized and loaded for later use.

	Parameters

	
	shortforms (str [https://docs.python.org/3/library/stdtypes.html#str] or list of str) – Shortform to disambiguate or list of shortforms to build models
for multiple synomous shortforms.

	pos_labels (list of str) – Labels for positive classes. These correspond to the longforms of
interest in an application. For adeft pretrained models these are
typically genes and other relevant biological terms.

	random_state (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – Optional specification of seed used when calculating crossvalidation
folds and fitting the logistic regression model. Default: None

	
estimator

	An sklearn pipeline that transforms text data with a TfidfVectorizer
and fits a logistic regression.

	Type

	py:class:sklearn.pipeline.Pipeline

	
stats

	Statistics describing model performance. Only available after model is
fit with crossvalidation

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
stop

	List of stopwords to exclude when performing tfidf vectorization.
These consist of the set of stopwords in adeft.nlp.english_stopwords
along with the shortform(s) for which the model is being built

	Type

	list of str

	
params

	Dictionary mapping parameters to their values. If fit with cv, this
contains the parameters with best micro averaged f1 score over
crossvalidation runs.

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
best_score

	Best micro averaged f1 score for positive labels over crossvalidation
runs. This information can also be found in the stats dict and is not
included when models are serialized. Only available if model is fit
with the cv method.

	Type

	float [https://docs.python.org/3/library/functions.html#float]

	
grid_search

	sklearn gridsearch object if model was fit with cv. This is not
included when model is serialized.

	Type

	py:class:sklearn.model_selection.GridSearchCV

	
confusion_info

	Contains the confusion matrix for each pair of labels per
crossvalidation split. Only available if the model has been fit with
crossvalidation. Nested dictionary,
confusion_info[label1][label2][i] gives the number of test examples
where the true label is label1 and the classifier has made prediction
label2 in split i.

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
other_metadata

	Data set here by the user will be included when the model is serialized
and remain available when the classifier is loaded again.

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
version

	Adeft version used when model was fit

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
timestamp

	Human readable timestamp for when model was fit

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
training_set_digest

	Digest of training set calculated using md5 hash. Can be
used at a glance to determine if two models used the same
training set.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
_std

	Array of standard deviations of feature values over training
set. This is used to calculate feature importance

	Type

	py:class:numpy.ndarray

	
cv(texts, y, param_grid, n_jobs=1, cv=5)

	Performs grid search to select and fit a disambiguation model

	Parameters

	
	texts (iterable of str) – Training texts

	y (iterable of str) – True labels for the training texts

	param_grid (Optional[dict [https://docs.python.org/3/library/stdtypes.html#dict]]) – Grid search parameters. Can contain all parameters from the train
method.

	n_jobs (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – Number of jobs to use when performing grid_search
Default: 1

	cv (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – Number of folds to use in crossvalidation. Default: 5

Example

>>> params = {'C': [1.0, 10.0, 100.0],
... 'max_features': [3000, 6000, 9000],
... 'ngram_range': [(1, 1), (1, 2), (1, 3)]}
>>> classifier = LongformClassifier('IR', ['insulin receptor'])
>>> classifier.train(texts, labels, param_grid=params, n_jobs=4)

	
dump_model(filepath)

	Serialize model to gzipped json

	Parameters

	filepath (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path to output file

	
feature_importances()

	Return feature importance scores for each label

The feature importance scores are given by multiplying the coefficients
of the logistic regression model by the standard deviations of the
tf-idf scores for the associated features over all texts. Note that
there is a coefficient associated to each label feature pair.

One can interpret the feature importance score as the change in the
linear predictor for a given label associated to a one standard
deviation change in a feature’s value. The predicted probability being
given by the composition of the logit link function and the linear
predictor.

	Returns

	Dictionary with class labels as keys. The associated values
are lists of two element tuples each with first element an ngram
feature and second element a feature importance score

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
get_model_info()

	Return a JSON object representing a model for portability.

	Returns

	A JSON object representing the attributes of the classifier needed
to make it portable/serializable and enabling its reload.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
predict(texts)

	Predict class labels for a list-like of texts

	
predict_proba(texts)

	Predict class probabilities for a list-like of texts

	
train(texts, y, C=1.0, ngram_range=(1, 2), max_features=1000, class_weight=None)

	Fits a disambiguation model

	Parameters

	
	texts (iterable of str) – Training texts

	y (iterable of str) – True labels for training texts

	C (Optional[float [https://docs.python.org/3/library/functions.html#float]]) – L1 regularization parameter logistic regression model. Follows
convention of support vector machines with smaller values
corresponding to stronger regularization. Default: 1.0

	ngram_range (Optional[tuple of int]) – Range of ngram features to use. Must be a tuple of ints of the
form (a, b) with a <= b. When ngram_range is (1, 2), unigrams and
bigrams will be used as features. Default: (1, 2)

	max_features (int [https://docs.python.org/3/library/functions.html#int]) – Maximum number of tfidf-vectorized ngrams to use as features in
model. Selects top_features by term frequency Default: 1000

	class_weight (Optional[dict [https://docs.python.org/3/library/stdtypes.html#dict] or 'balanced']) – Weights associated with classes in the form {class_label:
weight}. If not given, all classes are supposed to have weight one.

The “balanced” mode uses the values of y to automatically adjust
weights inversely proportional to class frequencies in the input
data as n_samples / (n_classes * np.bincount(y)).

Note that these weights will be multiplied with sample_weight
(passed through the fit method) if sample_weight is specified.

	
adeft.modeling.classify.load_model(filepath)

	Load previously serialized model

	Parameters

	filepath (str [https://docs.python.org/3/library/stdtypes.html#str]) – path to model file

	Returns

	longform_model – The classifier that was loaded from the given path.

	Return type

	py:class:adeft.classify.AdeftClassifier

	
adeft.modeling.classify.load_model_info(model_info)

	Return a longform model from a model info JSON object.

	Parameters

	model_info (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The JSON object containing the attributes of a model.

	Returns

	longform_model – The classifier that was loaded from the given JSON object.

	Return type

	py:class:adeft.classify.AdeftClassifier

NLP

Implements a set of natural language processing tools used to pre-process
text used for finding candidate longforms, recognizing defining patterns,
and learning classification models.

stopwords_min contains a small collection of stopwords for use in the
alignment based AdeftLongformScorer. english_stopwords contains
a larger collection of stopwords for use in classification and anomaly
detection models.

Util

Utility functions used by Adeft internally.

	
adeft.util.get_candidate(fragment)

	Return tokens in candidate fragment up until last excluded word

	Parameters

	
	fragment (str [https://docs.python.org/3/library/stdtypes.html#str]) – The fragment to return tokens from.

	use_stemming (Optional[bool [https://docs.python.org/3/library/functions.html#bool]]) – If True, stem apply stemming to tokens. Default: True

	
adeft.util.get_candidate_fragments(text, shortform, window=100)

	Return candidate longform fragments from text

Gets fragments of text preceding defining patterns (DPs) to search
for candidate longforms. Each fragment contains either a specified range
of characters before a DP, or characters up until either the start
of the sentence or the end of a previous DP.

	Parameters

	
	text (str [https://docs.python.org/3/library/stdtypes.html#str]) – Text to search for defining patterns (DP)

	shortform (str [https://docs.python.org/3/library/stdtypes.html#str]) – Shortform to disambiguate

	window (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – Specifies range of characters before a defining pattern (DP)
to consider when finding longforms. If set to 30, candidate
longforms would be taken from the string
“ters before a defining pattern”. Default: 100

Tutorials

The following Jupyter notebooks serve as tutorials to use Adeft models, and
train new models, respectively.

Introduction to Adeft

This notebook introduces how to use pre-trained Adeft models to disambiguate
shortforms in the context of surrounding text.

Availability: https://github.com/indralab/adeft/blob/master/notebooks/introduction.ipynb

Training Adeft models

This notebook walks through an example of training a new Adeft model for a
shortform of interest.

Availability: https://github.com/indralab/adeft/blob/master/notebooks/model_building.ipynb

 Python Module Index

 a

 		 	

 		
 a	

 	[image: -]
 	
 adeft	

 	
 	
 adeft.disambiguate	

 	
 	
 adeft.download	

 	
 	
 adeft.download.download	

 	
 	
 adeft.modeling	

 	
 	
 adeft.modeling.classify	

 	
 	
 adeft.modeling.label	

 	
 	
 adeft.nlp	

 	
 	
 adeft.recognize	

 	
 	
 adeft.util	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W

_

 	
 	_std (adeft.modeling.classify.AdeftClassifier attribute)

 	
 	_trie (adeft.recognize.AdeftRecognizer attribute)

A

 	
 	adeft.disambiguate (module)

 	adeft.download (module)

 	adeft.download.download (module)

 	adeft.modeling (module)

 	adeft.modeling.classify (module)

 	adeft.modeling.label (module)

 	
 	adeft.nlp (module)

 	adeft.recognize (module)

 	adeft.util (module)

 	AdeftClassifier (class in adeft.modeling.classify)

 	AdeftDisambiguator (class in adeft.disambiguate)

 	AdeftLabeler (class in adeft.modeling.label)

 	AdeftRecognizer (class in adeft.recognize)

B

 	
 	BaseRecognizer (class in adeft.recognize)

 	
 	best_score (adeft.modeling.classify.AdeftClassifier attribute)

 	build_from_texts() (adeft.modeling.label.AdeftLabeler method)

C

 	
 	confusion_info (adeft.modeling.classify.AdeftClassifier attribute)

 	
 	cv() (adeft.modeling.classify.AdeftClassifier method)

D

 	
 	disambiguate() (adeft.disambiguate.AdeftDisambiguator method)

 	download_models() (in module adeft.download.download)

 	
 	download_test_resources() (in module adeft.download.download)

 	dump() (adeft.disambiguate.AdeftDisambiguator method)

 	dump_model() (adeft.modeling.classify.AdeftClassifier method)

E

 	
 	estimator (adeft.modeling.classify.AdeftClassifier attribute)

F

 	
 	feature_importances() (adeft.modeling.classify.AdeftClassifier method)

G

 	
 	get_available_models() (in module adeft.download.download)

 	get_candidate() (in module adeft.util)

 	get_candidate_fragments() (in module adeft.util)

 	
 	get_model_info() (adeft.modeling.classify.AdeftClassifier method)

 	get_s3_models() (in module adeft.download.download)

 	grid_search (adeft.modeling.classify.AdeftClassifier attribute)

I

 	
 	info() (adeft.disambiguate.AdeftDisambiguator method)

L

 	
 	labels (adeft.disambiguate.AdeftDisambiguator attribute)

 	load_disambiguator() (in module adeft.disambiguate)

 	
 	load_disambiguator_directly() (in module adeft.disambiguate)

 	load_model() (in module adeft.modeling.classify)

 	load_model_info() (in module adeft.modeling.classify)

M

 	
 	modify_groundings() (adeft.disambiguate.AdeftDisambiguator method)

O

 	
 	OneShotRecognizer (class in adeft.recognize)

 	
 	other_metadata (adeft.modeling.classify.AdeftClassifier attribute)

P

 	
 	params (adeft.modeling.classify.AdeftClassifier attribute)

 	pos_labels (adeft.disambiguate.AdeftDisambiguator attribute)

 	
 	predict() (adeft.modeling.classify.AdeftClassifier method)

 	predict_proba() (adeft.modeling.classify.AdeftClassifier method)

R

 	
 	recognize() (adeft.recognize.BaseRecognizer method)

 	
 	recognizers (adeft.disambiguate.AdeftDisambiguator attribute)

 	(adeft.modeling.label.AdeftLabeler attribute)

S

 	
 	setup_models_folder() (in module adeft.download.download)

 	setup_resources_folder() (in module adeft.download.download)

 	setup_test_resource_folder() (in module adeft.download.download)

 	shortform (adeft.recognize.OneShotRecognizer attribute)

 	
 	shortforms (adeft.disambiguate.AdeftDisambiguator attribute)

 	stats (adeft.modeling.classify.AdeftClassifier attribute)

 	stop (adeft.modeling.classify.AdeftClassifier attribute)

 	strip_defining_patterns() (adeft.recognize.BaseRecognizer method)

T

 	
 	timestamp (adeft.modeling.classify.AdeftClassifier attribute)

 	
 	train() (adeft.modeling.classify.AdeftClassifier method)

 	training_set_digest (adeft.modeling.classify.AdeftClassifier attribute)

U

 	
 	update_pos_labels() (adeft.disambiguate.AdeftDisambiguator method)

V

 	
 	version (adeft.modeling.classify.AdeftClassifier attribute)

 	
 	version() (adeft.disambiguate.AdeftDisambiguator method)

W

 	
 	window (adeft.recognize.OneShotRecognizer attribute)

 nav.xhtml

 Table of Contents

 		
 Welcome to Adeft’s documentation!

 		
 Adeft modules reference

 		
 Download Trained Models

 		
 Disambiguate Shortforms

 		
 Discover Longforms

 		
 Recognize Defining Patterns

 		
 Learn Models

 		
 Label Corpora

 		
 Classify

 		
 NLP

 		
 Util

 		
 Tutorials

 		
 Introduction to Adeft

 		
 Training Adeft models

_static/file.png

_static/ajax-loader.gif

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

